基于孪生网络的自监督太阳能电池板裂纹检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM914

基金项目:

国家自然科学基金(61871351)项目资助


Crack detection method for solar panels based on siamese network and self-supervised learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    太阳能电池板的裂纹缺陷检测能够避免电能转换效率低,以及短路造成起火的损失。针对现存对比学习方法中存在 细微裂纹漏检导致检测精度低,并且严重依赖构建负样本等问题,提出了一种基于孪生网络的两阶段自监督裂纹检测方法。 第1阶段提出了一种基于卷积神经网络 (convolutional neural network,CNN)和 Transformer 的预训练编码器模型,通过孪生 网络架构学习样本的精细特征表示,提高对电池板细微裂纹的特征表示能力;第2阶段基于预训练模型在少量标注样本下学 习分类器以区分缺陷样本。为进一步区分不影响电池板功能的纵向裂纹,另增加了一个分类头进行判别。在 ELPV 数据集 上的实验结果表明,方法在测试准确度方面优于其他相关检测方法,在只对数据进行少量标注的情况下准确度达到83.26%, 单张检测时间为6.1 ms, 同时在裂纹图像中检出纵向裂纹的召回率也有76.7%。

    Abstract:

    Crack defect detection in solar panels can prevent energy conversion inefficiency and the risk of short circuits causing fires.In this paper,we propose a two-stage self-supervised crack detection method based on a siamese network to address the limitations of existing contrastive learning methods,such as slight crack omission leading to low detection accuracy and heavy reliance on constructing negative samples.In the first stage,a pre-trained encoder model based on CNN and Transformers is proposed to learn fine-grained feature representations of samples using the siamese network architecture,thereby improving the feature representation capability for micro-cracks in solar panels.In the second stage,a classifier is learned based on the pre-trained model with a small amount of annotated samples to distinguish defect samples.Additionally,a separate classification head is added to further differentiate longitudinally oriented cracks that do not affect the functionality of the solar panels.Experimental results on the ELPV dataset demonstrate that the proposed method outperforms other related detection methods in terms of test accuracy,achieving an accuracy of 83.26%with only a small amount of annotated data,the detection time of single sheet was 6.1 ms,and a recall rate of 76.7%for detecting longitudinally oriented cracks in crack images.

    参考文献
    相似文献
    引证文献
引用本文

崔 康,陈 平.基于孪生网络的自监督太阳能电池板裂纹检测方法[J].国外电子测量技术,2024,43(3):177-182

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码