基于改进 YOLOv7 模型的血细胞检测算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

新疆自治区创新人才建设专项自然科学计划(自然科学基金)(2020D01A132) 项目基金


Research on blood cell detection algorithm based on YOLOv7 improved model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在医学上,血细胞计数检测是衡量人体健康与否的重要诊断方法,但是血细胞图像中存在小目标和重叠目标的检测 难点。针对上述问题,提出一种改进的YOLOv7 目标检测算法。通过对原始的 YOLOv7 网络增加全局注意力机制(GAM), 提升网络的感受野,提高对小目标的检测精度;提出融合了加权双向特征金字塔网络(BiFPN) 和递归门控卷积 HorNet 的特 征金字塔 HorNet-BiFPN 结构,利用其高阶空间交互作用增强网络的特征融合能力,实现对红细胞重叠区域的建模,解决对重 叠红细胞的检测问题。实验结果表明,改进的 YOLOv7 模型的检测精确率达到了96.3%,对单张图片的检测时间达到了 74ms, 对图像中的3类细胞均实现了较强的检测效果,达到了医学辅助诊断的合理性。

    Abstract:

    In medicine,blood count detection is an important diagnostic method to measure human health,However, there are difficulties in detecting small targets and overlapping cells in blood cell images.To solve the above problems, an improved YOLOv7 object detection algorithm is proposed.By adding global attention mechanism(GAM)to the original network,improve the Receptive field of the network and the detection accuracy of small targets.A feature pyramid HorNet-BiFPN structure is proposed that combines the BiFPN network and the recursive-gated convolution HorNet.Its high-order spatial interaction is used to enhance the feature fusion capability of the network,realize the modeling of overlapping regions of red blood cells,and solve the detection problem of overlapping red blood cells.The experimental results show that the detection accuracy of the improved YOLOv7 model reaches 96.3%,the detection time of a single image is 74 ms,and the detection effect of three types of cells in the image is relatively strong,which achieves the rationality of medical assisted diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

周煜庭,余华平,肖粮钧,何 彪,曾慧群.基于改进 YOLOv7 模型的血细胞检测算法研究[J].国外电子测量技术,2024,43(4):1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-20
  • 出版日期:
文章二维码