异构网络中基于深度强化学习的用户关联与 资源分配策略
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN 915.81

基金项目:

国家自然科学基金(61661018)、江苏省基础研究计划青年基金(BK20210064)、无锡市科技创新创业资金(WX03-02B0137-022200-34) 项目资助


Strategy of user association and resource allocation based on deep reinforcement learning in heterogeneous networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于异构网络非凸性和组合性的特点,联合用户关联和资源分配来实现能量效率(energy efficiency , EE )和频谱效率 (spectral efficiency , SE )同时最大化的最优全局策略仍然是非常具有挑战性的。基于深度强化学习(deep reinforcement learn- ing , DRL )的方法成为在保证异构网络下行链路用户设备(user equipments , UEs )服务质量(quality of service , QoS )的同时实 现联合 EE- SE 性能最大化的必要解决方案。此外,为解决状态一动作空间下计算量大的问题,引入了多智能体架构的深度强 化学习算法(MAD 3QN )来获得近乎最优控制策略。仿真结果表明,MAD 3QN 算法在系统容量方面比DDQN 算法和 D Q N 算

    Abstract:

    Due to the non convexity and combinatorial characteristics of heterogeneous networks , it is still very challenging to combine user association and resource allocation to achieve the optimal global strategy that maximizes both energy efficiency ( EE ) and spectral efficiency ( SE ) simultaneously . The method based on deep reinforcement learning (DRL ) has become a necessary solution for maximizing joint EE -SE performance while ensuring the quality of service (QoS ) of user equipments ( UEs ) in heterogeneous networks . In addition , to solve the problem of high computational complexity in the state action space, the double DQN algorithm with multi-agent dueling architecture ( MAD3QN) was introduced to obtain almost optimal control strategies. The simulation results show that the MAD3QN algorithm has increased system capacity by 9.2% and 18.2% respectively compared to the DDQN algorithm and DQN algorithm , and improved joint EE-SE performance by 8.5% and 16.6% respectively, enhancing the effectiveness of the system.

    参考文献
    相似文献
    引证文献
引用本文

符 平 博,陶 旭,张 见,李 晖.异构网络中基于深度强化学习的用户关联与 资源分配策略[J].国外电子测量技术,2024,43(4):39-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-20
  • 出版日期:
文章二维码