基于改进 YOLOX 的猕猴桃分类识别与空间定位
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S126;TP249

基金项目:

国家自然科学基金(72061006)、贵州省林业局林业科学技术研究项目(黔林科合[2022]26号)资助


Classification identification and spatial localization of kiwifruit based on the improved YOLOX
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    复杂自然环境下果实的快速、准确识别和定位是猕猴桃机械臂采摘的关键和难点。面向猕猴桃实时采摘应用,开展 了基于深度学习的猕猴桃分类识别算法、空间定位模型构建和机械臂采摘实验研究。优选 Anchor_Free的一阶段 YOLOX 算 法模型,并通过引入注意力机制、调整通道数、增加特征融合、堆叠特征融合对该模型特征融合环节加以改进,提高了非结构 化环境下猕猴桃果实的分类识别精度。实验数据表明,改进YOLOX 算法对独立果实、树叶遮挡、树干遮挡、果实重叠的平均 精度(AP) 分别提升至99.38%、98.43%、93.82%和92.98%,平均精度均值(mAP) 达到96. 15%,其平均 F₁ 值提升至 94.24%,且在640×640分辨率下每幅图像的平均检测时间为0.019 s 。进一步地,利用图像深度信息对识别目标进行三维空 间位置求解,并经物理实验验证,实验中果实定位坐标误差≤3.3%。算法在识别率、检测时间和定位误差3方面取得了较优 的综合性能,满足猕猴桃机械臂采摘中果实的实时识别及定位需求。

    Abstract:

    Fast and accurate identification and localization of fruits in complex natural environments is the key and difficult point of kiwifruit robotic arm picking.For kiwifruit real-time picking applications,deep learning-based kiwifruit classification and recognition algorithms,spatial localization model construction and robotic arm picking experimental research were carried out.The one-stage YOLOX algorithm model of Anchor_Free is preferred,and the feature fusion link of this model is improved by introducing an attention mechanism,adjusting the number of channels,increasing feature fusion,and stacking feature fusion,which improves the accuracy of classifying and recognizing kiwifruit fruits in unstructured environments.The experimental data show that the AP of the improved YOLOX algorithm for no occluded,leaf occluded,branch occluded and fruit occluded is improved to 99.38%,98.43%,93.82%and 92.98%, respectively,the mAP reaches 96.15%,its average F,value is improved to 94.24%,and its average detection time is 0.019 s/space at 640×640 resolution.Further,the three-dimensional spatial position of the recognized target is solved using the image depth information and verified by physical experiments,in which the fruit localization coordinate error is ≤3.3%.The algorithm achieves superior overall performance in terms of recognition rate,detection time and localization error to meet the real-time fruit recognition and localization requirements in kiwifruit robotic arm picking.

    参考文献
    相似文献
    引证文献
引用本文

刘博文,徐卫平,徐钦,陈华伟.基于改进 YOLOX 的猕猴桃分类识别与空间定位[J].国外电子测量技术,2024,43(4):133-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-20
  • 出版日期:
文章二维码