轻量化 YOLOv7-tiny 的水下压印字符识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家重点研发计划(2023YFC2813104)、 国家重点研发计划(2023YFC3007004) 项目资助


Lightweight YOLOv7-tiny underwater embossed character recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动化水下字符识别技术能通过编号更高效地定位追踪水下设备,是管理和维护水下设备的关键。针对该任务目标 区别较小和水下场景中干扰等问题,并考虑其检测速度需求,基于 YOLOv7-tiny 模型,提出一种轻量化的改进模型。首先采 用 MobileNetV3 作为新的特征提取网络对整体框架进行轻量化处理;然后引入PConv 至 ELAN 模块中,减少 Neck 层的计算 量;最后将置换注意力机制应用至 Head 层,提升了模型对字符定位的表达能力。实验结果表明,改进后的模型相较于原模型 的平均精度均值(mAP) 提高了2.4%,参数量和计算量分别减少30.0%和38.5%,检测速度提升30.8%。改进后的模型在水 下字符识别任务中具有更高的效率和精度,为推进并实现水下自动化识别编号设备的部署提供了可行性。

    Abstract:

    Automated underwater character recognition technology can more efficiently locate and track underwater equipment through numbers,which is the key to managing and maintaining underwater equipment.In view of the problems such as the small target difference of the task and interference in the underwater scene,and considering its detection speed requirements,this article proposes a lightweight improved model based on the YOLOv7-tiny model. First,MobileNetV3 is used as a new feature extraction network to lightweight the overall framework.Then PConv is introduced into the ELAN module to reduce the calculation amount of the Neck layer.Finally,the displacement attention mechanism is applied to the Head layer to improve the model's ability to position characters.expression ability. Experimental results show that compared with the original model,the mAP of the improved model is increased by 2.4%,the amount of parameters and calculations are reduced by 30.0%and 38.5%respectively,and the detection speed is increased by 30.8%.The improved model has higher efficiency and accuracy in underwater character recognition tasks,providing feasibility for promoting and realizing the deployment of underwater automated identification and numbering equipment.

    参考文献
    相似文献
    引证文献
引用本文

李卓润,李 波,邱鹏程,刘 洪.轻量化 YOLOv7-tiny 的水下压印字符识别[J].国外电子测量技术,2024,43(4):162-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-20
  • 出版日期:
文章二维码