基于多尺度级联注意网络的肺实质分割
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

江苏省高等学校基础科学(自然科学)研究面上省资助经费项目(22KJB140017)、无锡学院人才启动基金 (2019r015,2022r006)项目资助


Lung parenchymal segmentation based on multiscale cascaded attention network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对肺实质分割任务中不同尺度特征的全局上下文信息利用率低、分割精度低、分割细节模糊等问题,提出一种多尺 度级联注意网络(multiscale cascaded attention networks,MCANet)。该网络主要由多尺度特征提取网络(multi-scale feature extraction network,MSFENet)、多尺度注意力引导模块(multi-scale attention guidance module,MSAG)、解码特征整合器 (decoding feature integrator,DFI)组成。首先,设计MSFENet 以提高特征信息在不同通道维度上的空间交互能力,在采样过 程中最大限度地保留图像的关键特征,丰富全局上下文信息。然后,设计MSAG 提高模型在解码过程中对多尺度特征信息的 利用率,并最大限度地融合两种注意力机制的优势。最后设计DFI,重新整合解码器生成的解码特征,以提高模型对边缘信息 的分割性能。在 LUNA16 数据集上对模型性能进行实验验证,得到了0.993的Dice 和3.864的 HD, 实验结果证明了 MCA- Net 与其他主流医学分割模型相比有更优异的分割性能,能更准确地分割肺实质。

    Abstract:

    A multiscale cascaded attention network(MCANet)is proposed to solve the problems of low utilization rate of global context information,low segmentation accuracy and fuzzy segmentation details of different scale features in lung parenchymal segmentation task.The network is mainly composed of a multi-scale feature extraction network (MSFENet),a multi-scale attention guidance(MSAG)module,and a decoding feature integrator(DFI).Firstly,the MSFENet network is designed to improve the spatial interaction ability of feature information in different channel dimensions,retain the key features of the image to the greatest extent in the sampling process,and enrich the global context information. Then,MSAG is designed to improve the utilization of multi-scale feature information in the decoding process of the model,and maximize the integration of the advantages of the two attention mechanisms.Finally, DFI was designed to reintegrate the decoding features generated by the decoder to improve the segmentation performance of the model for edge information.In this paper,the performance of the model was verified by experiments on the LUNA16 dataset,and the Dice of 0.993 and HD of 3.864 were obtained,and the experimental results proved that MCANet has better segmentation performance and can segment the lung parenchyma more accurately than other mainstream medical segmentation models.

    参考文献
    相似文献
    引证文献
引用本文

许圳兴,余 耀,赵 东,陈 园,范圣旺.基于多尺度级联注意网络的肺实质分割[J].国外电子测量技术,2024,43(5):60-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-25
  • 出版日期:
文章二维码