基于 FMS-YOLOv5s 的轻量化交通标志识别算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP3

基金项目:

厦门市海洋与渔业发展专项资金青年科技创新项目(23ZHZB043QCB37) 资助


Lightweight traffic sign recognition algorithm based on FMS-YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前的道路交通标志模型有着检测速度慢、模型大和参数多的缺点,提出了一种基于YOLOv5s 算法的轻量化交 通标志识别算法。首先引入轻量化 FasterNet 网络,利用该网络中的 FasterNet Block结构与原主干网络的C3 融合,形成一种 全新的 C3Faster 结构;接着将原网络的损失函数修改为基于最小点距离(MPDIoU) 的损失函数,来提高边界框回归的准确性 和效率;最后结合高效且轻量的置换注意力机制(shuffle attention,SA),提高模型的泛化能力和稳定性。在 CCTSDB 2021 数 据集上的实验结果表明,与原网络相比,改进后模型的参数量、模型大小、GFLOPs 分别减少了17.5%、17.5%和20%;同时 mAP@0.5 、mAP@0.75 、mAP@0.5:0.95 分别提升了2.3%、3.4%和2.4%。而且与 YOLOv3-tiny 等其他算法对比,所提 出的算法有明显的优越性,能满足各种场景下移动端实时性的需求。

    Abstract:

    A lightweight traffic sign recognition algorithm based on YOLOv5s algorithm is proposed for the current road traffic sign model with the disadvantages of slow detection speed,large model and many parameters.Firstly,a lightweight FasterNet network is introduced,and the FasterNet Block structure in the network is fused with the C3 of the original backbone network to form a new C3Faster structure.Then the loss function of the original network is modified to MPDloU to improve the accuracy and efficiency of the bounding box regression.Finally,the efficient and lightweight SA attention mechanism is combined to improve the generalization ability and stability of the model.The experimental results on the CCTSDB 2021 dataset show that compared with the original network,the number of parameters,model size,and GFLOPs of the improved model have been reduced by 17.5%,17.5%,and 20%, respectively.Meanwhile,mAP@0.5,mAP@0.75,and mAP@0.5:0.95 have been improved by 2.3%,3.4%,and 2.4%,respectively.And comparing with other algorithms such as YOLOv3-tiny,the proposed algorithm has obvious superiority and can meet the real-time demand of mobile in various scenarios.

    参考文献
    相似文献
    引证文献
引用本文

曹 立,康少波.基于 FMS-YOLOv5s 的轻量化交通标志识别算法[J].国外电子测量技术,2024,43(5):179-189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-25
  • 出版日期:
文章二维码