基于二次分解和改进沙猫群优化算法的空气质量预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

“太湖之光”科技攻关项目(k20221050)资助


Air quality predication based on two-layer decomposition and improved sand cat swarm optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测空气质量对人们的日常生活具有重要意义,提出了一种二次分解和改进沙猫群算法(improved sand cat swarm optimization,ISCSO)优化长短期记忆网络(long short-term memory,LSTM)相结合的预测模型。首先,利用完全自 适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)算法将PM₂s 数据分解为多个子序列,对预测效果不满意的重构序列使用变分模态分解(variational mode decomposition,VMD)方法进行 二次分解;其次,引入Cubic 混沌、螺旋搜索策略和麻雀警戒机制改进沙猫群算法,有效提高了算法的全局搜索性能和收敛速 度;最后,采用改进的沙猫群算法对 LSTM 模型参数进行优化,将各个子序列导入ISCSO-LSTM 模型预测并叠加得到最终预 测结果。实验结果表明,CEEMDAN-VMD-ISCSO-LSTM 组合模型具有较低的预测误差,相比 CEEMDAN-VMD-LSTM 和 CEEMDAN-VMD-SCSO-LSTM 模型,该模型在均方根误差方面分别降低了2.21和1.04μg/m³, 在拟合度方面分别提高了 4 .9%和2 . 1%。

    Abstract:

    Accurate prediction of air quality is of great significance to people's daily life,therefore,a predictive model based on quadratic decomposition and improved sand cat swarm optimization(ISCSO)to optimize the long short-term memory(LSTM)network was proposed.First of all,The PM₂s data was decomposed into multiple subsequences using complete ensemble empirical mode decomposition with adaptivenoise(CEEMDAN)algorithm,and the reconstructed sequence that are not satisfied with the prediction effect was quadratically decomposed by variational mode decomposition (VMD)method.Secondly,the sand cat swarm optimization was improved by introducing Cubic chaotic,spiral search strategy and sparrow alert mechanism to improve the global search performance and convergence speed of the algorithm. Finally,a improved sand cat swarm algorithm was used to optimize the LSTM model parameters,the individual subsequences were input into the ISCSO-LSTM model for prediction and superimposed to obtain the final prediction results.The experimental results show that the CEEMDAN-VMD-ISCSO-LSTM combination model exhibits lower prediction errors,compared to the CEEMDAN-VMD-LSTM and CEEMDAN-VMD-SCSO-LSTM,the model proposed in this article has a 2.21 and 1.04 μg/m³reduction respectively in root mean square error,and has a 4.9%and 2.1% higher respectively in term of fit.

    参考文献
    相似文献
    引证文献
引用本文

朱菊香,张诗云,张 涛,孙君峰,张赵良.基于二次分解和改进沙猫群优化算法的空气质量预测[J].国外电子测量技术,2024,43(5):190-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-25
  • 出版日期:
文章二维码