基于多残差和多重特征融合的去雾算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家青年自然基金(62106111)、2021年第二批产学合作协同育人项目(202102563020)资助


Fog removal algorithm based on multiple residuals and multiple feature fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前大多数图像去雾算法由于细节丢失导致去雾后的图像颜色失真,雾霾残留以及纹理细节模糊等问题,提出 一种基于多残差和多重特征融合端到端的去雾算法。首先通过设计浅层特征提取模块,为深层网络提高丰富信息的特征图; 其次设计多残差级联模块,提取多层次特征,帮助模型学习更加复杂的特征表示;然后设计局部-全局特征融合模块,捕获从最 细微到最广泛的特征;最后设计结合残差注意力的跨层特征融合模块,避免上下采样后的细节缺失,更好地提取图像中的局 部与全局信息特征。实验结果表明,所提算法在 SOTS 室内、室外测试集上峰值信噪比(PSNR) 分别取得了33.12、31.07 dB, 结构相似性(SSIM) 分别取得0.986、0.983,与当前大多数主流算法相比得到了明显的提升,且在合成雾图像和真实雾霾图像 均取得了不错的去雾效果,复原图像细节更加清晰,更符合人类视觉感知。

    Abstract:

    To address the common issues in most existing image dehazing algorithms,such as color distortion,haze residue,and blurring of texture details due to the loss of fine details,a new end-to-end dehazing algorithm based on multiresidual and multi-feature fusion is proposed.Initially,a shallow feature extraction module is designed to provide the deep network with feature maps rich in information.Subsequently,a multi-residual cascading module is constructed to extract multi-level features,assisting the model in learning more complex feature representations.Furthermore,a local-global feature fusion module is introduced to capture features ranging from the most subtle to the most extensive. Finally,a cross-layer feature fusion module,combined with residual attention,is designed to prevent the loss of details after upsampling and downsampling,thus better extracting local and global information features from the image. Experimental results show that the proposed algorithm achieves peak signal-to-noise ratio(PSNR)of 33.12 and 31.07 dB,and structural similarity(SSIM)of 0.986 and 0.983,respectively,on indoor and outdoor SOTS test sets, which is significantly improved compared with most current mainstream algorithms.Moreover,the fog removal effect is good in both the synthetic fog image and the real haze image,and the details of the restored image are clearer and more in line with human visual perception

    参考文献
    相似文献
    引证文献
引用本文

武丽,俞俊,张征浩,葛彩成.基于多残差和多重特征融合的去雾算法[J].国外电子测量技术,2024,43(6):12-21

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-09
  • 出版日期:
文章二维码