计及数据不平衡的RUSBoost-LightGBM 短期负荷预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:


Short-term load forecasting method with RUSBoost-LightGBM considering data imbalance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着人工智能技术的发展,负荷预测的准确度显著提高,但仍有一些负荷曲线预测精度较低。造成这种现象的原因 在于训练集中这类负荷曲线属于少数类,导致数据不平衡,模型无法充分学习,从而影响了预测的精度。为解决电力负荷数 据不平衡问题导致的预测精度降低的问题,提出了一种先分类后预测的解决方法。通过改进的K-Mediods 方法把具有高相 似性的历史负荷曲线进行聚类,并构造分类标签与电力负荷的特征集;然后根据预测时间的特征进行分类,通过RUSBoost 算 法很好的优化了分类过程中数据不平衡问题;最后在每类中使用LightGBM算法进行负荷预测。在公开数据集上的实验表 明,所提出方法对少数类负荷的预测效果显著,其平均绝对百分比误差(MAPE) 为2.95%,均方根误差(RMSE) 为 175.71 MW;对于常规负荷的预测,MAPE为3 .52%,RMSE为195.84 MW,相对其他方法也具有较好的预测效果。

    Abstract:

    The advancement in artificial intelligence technology has greatly enhanced load forecasting precision. Nonetheless,certain load curves within the training set experience low forecasting accuracy.This is attributed to data imbalance resulting from the load curves belonging to a limited number ofclasses.Consequently,the model fails to learn sufficiently leading to compromised forecasting accuracy.To address the issue of reduced prediction accuracy due to data imbalance in electric load forecasting,a solution involving classification before load prediction is proposed.The method involves clustering historically similar load profiles using an improved K-Medoids approach,constructing classification labels,and feature sets for electric load.Subsequently,classification is performed based on temporal features,and the RUSBoost algorithm is employed to effectively address data imbalance issues during the classification process.Finally, the LightGBM algorithm is utilized for load predictionwithin each class.Experiments on public datasets demonstrate the effectiveness of the proposed method in forecasting certain types of loads.The MAPE is 2.95%,and the RMSE is 175.71 MW.For the forecasting of conventional loads,the MAPE is 3.52%,and the RMSE metric is 195.84 MW, which is relative to other methods that also have better forecasting effect.

    参考文献
    相似文献
    引证文献
引用本文

张 毅,温 蜜.计及数据不平衡的RUSBoost-LightGBM 短期负荷预测方法[J].国外电子测量技术,2024,43(6):41-49

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-09
  • 出版日期:
文章二维码