基于改进YOLOv5的 SAR 图像飞机目标细粒度识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN957.52

基金项目:

国家自然科学基金(61901444)项目资助


Fine-grained recognition of aircraft targets in SAR images based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对合成孔径雷达(synthetic aperture radar,SAR)图像飞机目标细粒度识别中的小目标和多尺度检测问题,提出了 一种基于YOLOv5的改进SAR图像飞机目标识别算法。该方法首先对网络进行重构,加入小目标检测层,改善小目标的漏 检问题,提高目标定位精度。其次,在颈部网络中引入极化自注意力机制(polarized self attention,PSA),并使用双边特征金 字塔结构(bir-directional feature pyramid network,BiFPN)进行多层特征带权融合,提高对飞机目标散射信息的关注度和滤除 干扰信息。最后,使用SIoU(SCYLLA intersection over union)作为网络损失函数提高网络收敛速度和检测精度。利用SAR- AIRcraft-1.0数据集进行了算法有效性试验研究,实验结果表明,算法有效提升了飞机目标的检测精度,精确率、召回率、平均 精度均值分别达到92.6%、84.1%、90.1%。

    Abstract:

    This study proposes a synthetic aperture radar(SAR)image aircraft target recognition algorithm based on improved YOLOv5 for the small arget and multi-scale detection problems inthe fine-grained detection of aircraft targets in synthetic aperture radar images.Firstly,a small target detection layer is added to solve the leakage detection problem of small targets and improve the target localization accuracy.Secondly,the polarized self-attention mechanism is introduced into the neck network,and the bi-directional feature pyramid network(BiFPN)is used for multilayer feature band-weight fusion to improve the attention to the scattering information of aircraft targets.Finally,SCYLLA intersection over union(SIoU)is used as the network loss function to improve the convergence speed.In this paper,the effectiveness of the algorithm is tested by using the SAR-AIRcraft 1.0 dataset,and the improved YOLOv5 achieves 92.6%recall,84.1%precision,and 90.1%mAP@0.5.Experimental results show that the proposed algorithm has higher detection accuracy than other mainstream one-stage algorithms

    参考文献
    相似文献
    引证文献
引用本文

张武,刘秀清.基于改进YOLOv5的 SAR 图像飞机目标细粒度识别[J].国外电子测量技术,2024,43(6):143-151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-09
  • 出版日期:
文章二维码