基于S变换和深度学习的多特征融合的电压暂降源识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181;TM743

基金项目:


Multi-feature fusion based on S-transform and deep learning for voltage transient source identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着工业和科技的发展,用户对电压暂降的关注度不断提高,识别电压暂降产生的原因愈显得越来越重要。针对引 起电压暂降的单一暂降源和复合暂降源,提出了将S 变换提取特征和深度学习自动提取特征相结合的识别方法。首先利用 数值模型框架产生单一暂降源和复合暂降源数学模型,进而得到9种故障类别的暂降数据集并作为原始数据,其次对原始数 据进行处理,即在标准的S 变换基础上引入两个调节因子得到改进的S 变换,得到S 变换数据,引入16个指标对S 变换数据 进行特征提取并作为指标特征,将上述原始数据和S 变换数据作为模型输入,利用卷积神经网络(convolutional neural net- work,CNN) 对暂降数据进行空间特征提取,同时将数据分为多个一维向量输入到双向长短期记忆网络(bi-directional long- short-term memory networks,Bi-LSTM)提取时序特征,最后建立指标特征、空间特征以及时序特征的多特征融合的 S-CNN- LSTM识别模型。仿真结果表明,未经过特征融合与经过多特征融合的识别准确率分别为98.36%、99.08%,说明多特征融 合能够提高识别准确率。

    Abstract:

    With the development of industry and science and technology,the user's concern about voltage dips is increasing,and it is more and more important to identify the causes of voltage dips.Aiming at the single and composite sources of voltage dips,this paper proposes a recognition method that combines the S-transform feature extraction and deep learning automatic feature extraction.Firstly,the numerical modeling framework is used to generate mathematical models of single and composite transient sources,and thenthe transient datasets of nine fault categories are obtained and used as the original data,and secondly,the original data are processed,i.e.,two adjustment factors are introduced to obtain the improved S-transform based on the standard S-transform to obtain the S-transform data,and 16 metrics are introduced to extract features from the S-transform data and are used as the metrics'features.The original data and the S-transformed data are used as model inputs,and the spatial features are extracted from the transient data by using convolutional neural network(CNN),while the data are divided into several onedimensional vectors and input into bi- directional long short-term memory networks(Bi-LSTM),which is the most suitable method to extract the spatial features of the S-transformed data.Memory networks(Bi-LSTM)to extract temporal features,and finally establish a multi-feature fusion S-CNN-LSTM recognition model with indicator features,spatial features and temporal features. The simulation results show that the recognition accuracies without feature fusion and after multi-feature fusion are 98.36%and 99.08%,respectively,indicating that multi-feature fusion can improve the recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张 峰,陈 雷.基于S变换和深度学习的多特征融合的电压暂降源识别方法[J].国外电子测量技术,2024,43(8):26-36

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码