基于动态贝叶斯网络的手势识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了动态手势的识别技术,实现人机交互。采用HSV空间的肤色模型实现手势定位,光流场算法进行手势追踪,具有较好的快速性、准确性和鲁棒性。提出应用链码描述手势运动矢量,双手相对位置标量以及双手与脸的相对位置标量,将多条链码作为动态手势的特征进行提取。建立了一个动态手势识别的动态贝叶斯网络模型,将一部分手势链码作为训练样本,通过对DBNs的推理学习实现手势识别。实验构建动态手势识别系统,可应用于多媒体、智能电器或幻灯片控制之中。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

侯亭亭 肖秦琨 杨永侠.基于动态贝叶斯网络的手势识别[J].国外电子测量技术,2015,34(1):36-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-27
  • 出版日期:
文章二维码