基于区间二型模糊集的农田障碍物分割方法
DOI:
CSTR:
作者:
作者单位:

1.杨凌职业技术学院信息工程分院杨凌712100;2.杨凌职业技术学院机电工程分院杨凌712100;3.广州涉外经济职业技术学院广州510540

作者简介:

通讯作者:

中图分类号:

TP391.9TN957.52

基金项目:


Farmland obstacle image segmentation based on interval Type II fuzzy set
Author:
Affiliation:

1.Department of Information Engineering, Yangling Vocational & Technical College, Yangling 712100, China;2. Department of Mechanic and Electronic Engineering, Yangling Vocational & Technical College, Yangling 712100, China;3. Guangzhou International Economics College, Guangzhou 510540, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非结构化农田环境下障碍物图像在应用传统算法进行图像分割时,效果不明显,容易受到水渍、阴影等外界环境影响等问题,提出了一种基于区间二型模糊集的农田障碍物图像分割方法。该方法将采集到的原始农田彩色图像转换到Lab颜色空间,提取出a分量并将其转换为灰度图像,对所得灰度图像进行模糊化处理,将其转换为区间二型模糊集,选择最大熵值所对应的灰度值对图像进行分割。通过实验和分析,本文算法能够更好地分割出农田障碍物目标,是一种有效的农田障碍物图像分割方法。

    Abstract:

    In order to solve the farmland obstacle image segmentation problems such as not obvious, easy to be influenced by water stains and shadows under the unstructured environment using traditional algorithms, a farmland obstacle image segmentation based on interval Type II fuzzy set was proposed. The original color farmland obstacle image was firstly converted to Lab color space, and then, ‘a’ component image was extracted and converted to grayscale image. The grayscale image was fuzzed and converted into interval Type II fuzzy set. The gray level corresponding to the maximum entropy was selected to segment images. The experimental results and analysis showed that the proposed method can better segment farmland obstacle, and it is an effective method for farmland obstacle image segmentation.

    参考文献
    相似文献
    引证文献
引用本文

刘琼,史诺,申妙芳.基于区间二型模糊集的农田障碍物分割方法[J].国外电子测量技术,2016,35(4):81-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-05-23
  • 出版日期:
文章二维码