单一电能质量扰动的分类识别研究
DOI:
CSTR:
作者:
作者单位:

军械工程学院车辆与电气工程系 石家庄 050003

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

国家自然科学基金(51307184)项目资助


Research of signal power quality disturbance identification and classification
Author:
Affiliation:

Department of Vehicle and Electrical Engineering of Ordnance Engineering College, Shijiazhuang 050003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电能质量扰动的分类识别对电能质量综合治理具有重要意义,为此提出了一种基于粒子群优化极限学习机的电能质量扰动分类新方法。利用小波变换将扰动信号做10层分解,提取有效区分扰动信号类型层数的能量差、能量差平均值及能量差的标准差作为特征向量,并将扰动信号与正常信号的均方根作为补充,减少输入向量维度。提出采用极限学习机训练误差作为粒子群的适应度函数来优化隐含层神经元个数,在提升分类速度的基础上保持较高的分类精度。经仿真验证表明,该方法能够准确有效地识别常见的7种扰动类型,相比于传统的BP神经网络具有较高的分类速度。

    Abstract:

    Power quality disturbance identification and classification are important for power quality management, for which a new method is proposed to deal with power quality disturbance identification and classification based on PSOELM (particle swarm optimizationextreme learning machine). Decompose the disturbance signals with wavelet for ten layers and extract the layers of energy difference which can effectively distinguish the difference between disturbance signals, the average of energy difference and the standard deviation of energy difference as feature vectors, in addition, the root mean of disturbance signals and normal signals is calculated as a supplement in order to reduce the dimension of the importing vectors. It is proposed that ELM training error is used as the fitness function of PSO to optimize the hidden layer neuron number to enhance the speed of classification and also maintain high classification accuracy. Simulation results show that this method can accurately and effectively identify seven common disturbance types and have a higher classification speed comparing to the traditional BP neural network.

    参考文献
    相似文献
    引证文献
引用本文

桑博,刘洪文,尹志勇.单一电能质量扰动的分类识别研究[J].国外电子测量技术,2016,35(7):56-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-09-30
  • 出版日期:
文章二维码