动态百分比特征裁剪AdaBoost人脸检测算法
DOI:
CSTR:
作者:
作者单位:

河海大学计算机与信息学院 南京 211100

作者简介:

通讯作者:

中图分类号:

TN18

基金项目:


Dynamic percentage AdaBoost face detection algorithm based on feature pruning
Author:
Affiliation:

College of Computer and Information,Hohai University, Nanjing 211100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人脸检测的任务是从图像或视频中提取出包含人脸的数据信息。其中目前应用最广泛的是AdaBoost算法。鉴于传统AdaBoost算法存在训练时间长的问题,提出了一种改进算法。利用指定的裁剪百分比,每一轮裁剪掉参与训练的特征中分类误差较大的特征,并将未参加上一轮迭代的特征加入到这一轮训练中,当错误率大于0.5时,会动态地降低裁剪百分比。实验表明该算法的性能要优于目前已有的基于特征裁剪的算法,同时从减少参与训练的特征个数角度入手,在保证准确率的前提下,大幅降低了算法花费的训练时间。

    Abstract:

    The task of face detection is extracting human face data information from image and video. The most widely used algorithm is AdaBoost. Considering the traditional AdaBoost algorithm has a too long training time problem, this paper has proposed an improved algorithm. By using specific trimming percentage, the algorithm trims the features with large error in classification in each round and adds the features which were not included in the last round into this round of training. When the error rate is over 0.5, Adaboost decreases trimming percentage dynamically. The experiment shows that this algorithm improves the training time and application scope of the algorithm, in contrast with Adaboost algorithm based on feature trimming. At the same time, from the view of reducing the characteristic number to participate in the training, the improved algorithm greatly reduced the cost of training time under the requirement of accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张鸿鹏,李东新.动态百分比特征裁剪AdaBoost人脸检测算法[J].国外电子测量技术,2016,35(9):37-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-10-20
  • 出版日期:
文章二维码