多车道视频车流量检测和计数
CSTR:
作者:
作者单位:

内蒙古警官学校内蒙古监狱管理局服刑人员矫治办公室 呼和浩特 010070

中图分类号:

TN99


Videobased vehicle flow detection and counting for multilane roads
Author:
Affiliation:

Correctional Office of Inner Mongolia Prison Administration, Inner Mongolia Police School, Hohhot 010070,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    车流量检测在智能交通领域具有重要的地位,车流量检测的重点是识别监控视频中的车辆并计数,因此,提出一种有效的背景建模和准确的车辆计数方法显得尤为重要。本文提出了背景差分法和混合高斯模型来提高运动车辆的检测质量,并在车道内设置了虚拟线圈,利用连通域分析法、区域灰度均值法两种方法检测运动车辆。实验结果表明区域灰度均值法要优于连通域分析法,区域灰度均值法可以解决车辆漏检的问题,车辆计数的准确度有了显著的提高,准确率可达到94%以上。

    Abstract:

    The vehicle flow detection plays an important role in the field of the intelligent transportation systems(ITS).The vehicle flow detection focuses on detection and counting of the vehicles in the surveillance videos. However, it requires to present a kind of effective background modeling and accurate vehicle counting method.In this paper, we proposed the background subtraction (BS) and the Gaussian mixture model (GMM) for improving the detection quality of the moving vehicles. In addition, we set up the virtual loops for vehicle counting by the connected component analysis (CCA) method and the region gray average values (RAGV) method. The experiment results showed that the RAGV method was superior to the CCA method. The RAGV method could solve the problem of the missing vehicles. The accuracy of vehicle counting could be improved significantly and reach 94% by the RAGV method.

    参考文献
    [1]徐勤军,吴镇扬.视频序列中的行为识别研究进展[J].电子测量与仪器学报,2014,28(4):343351.
    [2]张韬. 基于视频的车流量检测建模与分析[J]. 计算机与数字工程, 2014, 42(6): 10751078.
    [3]金汉均,梅洪洋.Sobel算子在提取视频运动目标轮廓的应用研究[J]. 电子测量技术,2014,37(11):2932.
    [4]JIANG D,SHAN Y,WANG D Y,et al. Research on magnetic levitation absolute vibration measurement method in vehicles[J]. Instrumentation,2014,1(2):3849.
    [5]黄杏,白彦锋.基于主动磁检测技术的车辆检测新方法[J].国外电子测量技术,2011,30(11):7982.
    [6]贺振东,王耀南,刘洁,等.基于背景差分的高铁钢轨表面缺陷图像分割[J].仪器仪表学报,2016,37(3):640649.
    [7]陈凤东,洪炳镕.基于动态阈值背景差分算法的目标检测方法[J]. 哈尔滨工业大学学报,2005,37(7):882884.
    [8]周世付,李建雄,沈振乾,等.基于高斯混合模型的多车道车流量检测算法[J].计算机仿真,2012,29(10):331335.
    [9]CHEN X T, ZHANG L H. Highquality voice conversion system based on GMM statistical parameters and RBF neural network[J].The Journal of China Universities of Posts and Telecommunications,2014,21(5):6875.
    [10]LAI A H S, YUNG N H C. Vehicletype identification through automated virtual loop assignment and blockbased directionbiased motion estimation[J].IEEE Transactions on Intelligent Transportation Systems, 2000,1(2):8697.
    [11]LIU ZH, HUANG D, LIU Y F.A traffic survey algorithm of video virtual loop[J].International Conference on Computer Application and System Modeling.Taiyuan, 2010(13):439441.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戴晶华,郭俊生.多车道视频车流量检测和计数[J].国外电子测量技术,2016,35(10):30-33

复制
分享
文章指标
  • 点击次数:1361
  • 下载次数: 2219
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2016-11-23
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变