基于灰色BP神经网络的实验材料供应预测
DOI:
CSTR:
作者:
作者单位:

1.渤海大学工学院 锦州 121013;2.渤海大学实验管理中心 锦州 121013

作者简介:

通讯作者:

中图分类号:

TN957.52+9TP183

基金项目:

国家自然科学基金资助项目(61401044)、渤海大学教学改革项目(BDJG15YBC018)资助


Prediction of laboratory equipment support based on grey relation analysis and BP neural network
Author:
Affiliation:

1.College of Engineering, Bohai University, Jinzhou 121013, China; 2. Experiment Management Center, Bohai University, Jinzhou 121013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单一BP神经网络对实验器材需求量预测准确度偏低的情况,提出了一种将灰关联分析与BP神经网络相结合的实验材料需求预测模型。先用灰关联分析法计算出影响需求量的各因子之间的关联度,然后选择关联度较大的3个优势因子作为BP神经网络的训练样本,建立了3层BP网络预测模型。以某实验材料的实际需求量为实例进行算法检验,对比分析了灰色BP网络模型和单一BP网络模型的预测准确性。实验结果表明:灰色BP网络模型将原有6101的BP网络结构简化为361结构,灰色BP网络模型预测的最大相对误差仅为-1.36%,而单一BP网络模型的预测最大相对误差为-4.18%,灰色BP模型比单一BP模型的预测精度更高,结构更简单。

    Abstract:

    To deal with low accuracy of single BP neural network in the prediction of laboratory equipment demand, a prediction model based on grey relation analysis and BP neural network is proposed. The correlation degrees between influencing factors were first calculated using grey relation analysis method. Three major factors with higher correlation degrees were chosen as training samples for the BP neural network and a threelayered BP network prediction model was established. The real laboratory equipment demand of an experiment was taken as an example to test the algorithm. And a comparative analysis of the prediction accuracy of the grey BP network model and the single BP network model was done. The result shows that the grey BP network model reduces the topology of BP network from 6101 to 361. Its maximum relative error is -1.36%, while the one of the single BP network model is -4.18%. The prediction accuracy of the grey BP network model is higher and its structure is also simpler.

    参考文献
    相似文献
    引证文献
引用本文

丁硕,巫庆辉,常晓恒,王东,张放.基于灰色BP神经网络的实验材料供应预测[J].国外电子测量技术,2016,35(12):78-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-01-12
  • 出版日期:
文章二维码