基于a-BvSBEM主动学习的高光谱图像分类
CSTR:
作者:
作者单位:

河海大学 南京 210000

中图分类号:

P407.8TN957.52


Hyperspectral image classification based on best vs secondBest active learning and expectation maximization cluster
Author:
Affiliation:

Hohai University, Nanjing 210000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在高光谱遥感图像分类中,需要大量的训练样本对分类器进行训练,然而对样本标记非常困难并且耗时、昂贵。针对样本标记困难的问题,提出了自适应的样本不确定性与代表性相结合的主动学习选择训练样本。样本的不确定性是利用最优标号与次优标号(best vs secondbest,BvSB)的方法计算。用期望最大(expectation maximization,EM)聚类计算样本的代表性。然后将样本的不确定性与代表性通过自适应权重相结合,从而选出含信息量最大的未标注样本加入进行人工标注,并加入到训练样本。通过实验表明,此方法性能更加稳定,准确率也有一定的提高。

    Abstract:

    In hyperspectral remote sensing image classification, needs a large number of training samples to trainclassifier, but labeled sanmpes is very difficult ,timeconsuming and expensive.Therefor, we proposed aadaptive method combined representative samples with uncertainty samples to select samples. We use the active learning based on the best vs secondbest(BvSB) for selecting training samples and take advantage of the expectation maximum (Expectation Maximization, EM) cluster to computerepresentativeness.Then uncertainty and representative of the samples combined with aadaptive weight to select most informative unlabeled samples for manual labeling, and join the training set for training classifier. Experiments show that our method is more stable performance and accuracy is also improved.

    参考文献
    [1]LI J, MARPU P R, PLAZA A, et al. Generalized composite kernel framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(9):48164829.
    [2]王建国, 张鑫礼, 张文兴. 核模糊C均值聚类粒度支持向量机方法研究[J]. 中国测试, 2016, 42(2):9699.
    [3]张国刚, 徐向辉, Zhang G S,等. 基于加权纹理特征的SAR图像目标识别算法[J]. 国外电子测量技术, 2015, 34(9):2225.
    [4]宋倩, 黄睿. 基于属性剖面和支持向量机的遥感图像检索[J]. 电子测量技术, 2016, 39(8):9699.
    [5]汪济洲, 鲁昌华, 蒋薇薇,等. 一种新的基于混合粒子的粒化支持向量机算法[J]. 电子测量与仪器学报, 2015,29(4):591597.
    [6]HU D M, LIU Q, NIU G, et al. Study on phase retardation characteristic of LCVR using dispersion analysis and SVM[J]. Instrumentation, 2015,2(2):1117.
    [7]DEMIR B,PERSELLO C, BRUZZONE L. Batchmode activelearningmethods for the interactive classification of remote sensing images[J].Transactions on Geoscience & Remote Sensing, 2011,49(3):10141031.
    [8]陈荣, 曹永锋, 孙洪. 基于主动学习和半监督学习的多类图像分类[J]. 自动化学报, 2011, 37(8):954962.
    [9]JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multiclass active learning for image classification[C].IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2009:23722379.
    [10]TARABALKA Y. Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques[J]. IEEE Transanctions on Geoscience & Remote Sensing, 2009,47(8):29732987.
    [11]袁永华, 李玉, 赵雪梅. 基于谱聚类的高分辨率全色遥感影像分割[J]. 仪器仪表学报, 2016, 37(7):16561664.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张琳.基于a-BvSBEM主动学习的高光谱图像分类[J].国外电子测量技术,2017,36(4):17-20

复制
分享
文章指标
  • 点击次数:1298
  • 下载次数: 1352
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-05-31
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变