基于K-Means聚类算法的改进
DOI:
CSTR:
作者:
作者单位:

河海大学 计算机与信息学院 南京 211100

作者简介:

通讯作者:

中图分类号:

TP181TN957

基金项目:


Improvement of clustering algorithm based on k-means
Author:
Affiliation:

College ofComputer and Information, Hohai University, Nanjing 211100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文基于传统的K-means聚类方法提出来一种基于密度的改进K-means聚类方法。改进后的方法,首先选取数据集中密度最大的点作为第一个聚类中心点,以此为基准,选取离此点最远的点作为第二个初始聚类中心,再在剩余的点中找出离这两个初始点距离最远的点作为第三个聚类中心,以此类推,直到找到所需的K个点,之后再根据K-means算法迭代更新聚类中心,直到收敛或达到设定的迭代次数为止。实验结果表明,本文提出的方法与传统K-means方法相比准确率及稳定性方面均有所提高,可以作为聚类研究的一个新的思路。

    Abstract:

    This paper presents a method of clustering which improves the stability and efficiency of K-means clustering and based on density.The first step of this method is to select the largest density point of the data set .On this basis, the farthest point from this point is selected as the second initial cluster center,Then, we look for the farthest distance from the two initial points in the remaining points as the center of the third clusters,And so on, until you find the desired K points, and then according to the K-means algorithm to update the cluster center, until convergence or Up to the set number of iterations. The result of the experiments show that the proposed method is better than the traditional K-means method in terms of accuracy and stability, and can be used as a new idea of clustering research.

    参考文献
    相似文献
    引证文献
引用本文

李金涛,艾萍,岳兆新,马梦梦,边世哲.基于K-Means聚类算法的改进[J].国外电子测量技术,2017,36(6):9-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-19
  • 出版日期:
文章二维码