基于改进PSO-BP算法的机器人目标位姿识别方法
DOI:
CSTR:
作者:
作者单位:

桂林电子科技大学 海洋工程学院,北海 53600

作者简介:

通讯作者:

中图分类号:

TP391.41;TP242

基金项目:

国家自然科学基金资助项目(61763006)资助


A Robot Target Pose Recognition Method Based on Improved PSO-BP Algorithm
Author:
Affiliation:

Ocean Engineering College, Guilin University of Electronic Technology, Guangxi Beihai 536000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人作业环境复杂,物料分布具有随机性,导致机器人目标位姿的辨识和定位精度低,实时性差,为此提出一种基于改进粒子群算法-BP神经网络(PSO-BP)的机器人目标位姿识别方法。采用改进的中值滤波算法对目标图像预处理,构建多尺度灰度差异算子以及局部图像熵算子,将两者点积运算获取加权局部熵,抑制目标图像中的噪声。通过多视图几何中间帧的关联特征信息,提取机器人目标位姿特征。在BP神经网络训练阶段通过改进的PSO算法优化处理,采用优化后的BP神经网络算法对提取的特征展开训练和识别,最终实现机器人目标位姿识别。实验结果表明,当机器人目标测试样本数量为55个时,所提方法的亮度方差为0.305,当像素识别误差为1.5%时,所提方法获取的机器人目标位姿识别误差为0.11,所提方法能够在像素识别误差下准确识别机器人目标,获取高精度的机器人目标位姿识别结果。

    Abstract:

    The complex operating environment of the robot and the randomness of material distribution lead to low accuracy of robot target pose identification and positioning, and poor real-time performance. Therefore, a method for robot target pose recognition based on improved PSO-BP algorithm is proposed. The target image is preprocessed by an improved median filter algorithm, a multi-scale gray difference operator and a local image entropy operator are constructed, and the weighted local entropy is obtained by dot product operation to suppress the noise in the target image. The robot target pose features are extracted through the associated feature information of the multi-view geometric intermediate frames. In the BP neural network training stage, the improved PSO algorithm is optimized, and the optimized BP neural network algorithm is used to train and recognize the extracted features, and finally realize the robot target pose recognition. The experimental test results show that the luminance variance of the proposed method is 0.305 when the number of robot target test samples is 55, and the positional recognition error of the robot target obtained by the proposed method is 0.11 when the pixel recognition error is 1.5%. The proposed method can accurately recognize the robot target under the pixel recognition error and obtain the high-precision robot target positional recognition results.

    参考文献
    相似文献
    引证文献
引用本文

李鹏.基于改进PSO-BP算法的机器人目标位姿识别方法[J].国外电子测量技术,2023,42(01):7-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码