改进CNN的供水管道泄漏声音识别
DOI:
CSTR:
作者:
作者单位:

1.广东工业大学机电学院 广州 510006; 2.电子科技大学中山学院机电工程学院 中山 528402

作者简介:

通讯作者:

中图分类号:

TP23

基金项目:

广东省科技计划项目(2021A0101180005);广东省普通高校创新团队项目——机器人与智能装备团队(2020KCXTD035)项目资助


Improved CNN for sound recognition of water supply pipeline leaky
Author:
Affiliation:

1.College of electrical and mechanical, Guangdong University of Technology, Guangzhou 510006,China; 2. College of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Zhongshan 528402, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了检测供水管道是否出现泄漏,同时针对人工检测精度低、背景噪音难以去除和现有检测设备的实用性低等问题,本文研究了一种基于卷积神经网络(Convolutional Neural Network, CNN)的供水管道泄漏声音识别方法。首先设计水下机器人的供水管道内部声音实时采集系统,并利用用户数据报协议(User Datagram Protocol/Internet Protocol, UDP/IP)通信技术将该系统采集的声音信息上传至上位机,并对供水管道内的声音进行泄漏和不泄漏的划分且制作成数据集,提取泄漏音频和不泄漏音频样本的梅尔谱特征图,根据实时性选用轻量级卷积神经网络ShuffleNet V2进行训练和识别;其次引入卷积注意力模块(Convolution Block Attention Module, CBAM)到网络模型中,并对ShuffleNet V2 的Unit1单元进行改进,提出了Unit1_y单元,最后将改进后的网络与MobileNet V3、ResNet18等轻量级网络进行对比,试验结果表明改进后的网络模型相较于其他的模型对供水管道漏泄声音识别效果最佳且参数量低,占用上位机运算资源少,测试集识别率达到92.14%,验证了算法的有效性。

    Abstract:

    In order to monitor whether there is leakage in the water supply pipeline, aiming at the problems of low manual detection accuracy, difficult removal of background noise and low practicability of equipment, a water supply pipeline leakage sound recognition method based on lightweight convolutional neural network CNN is studied. Firstly, the real-time sound acquisition system in the water supply pipeline of the underwater robot is designed, and the sound information collected by the system is uploaded to the upper computer by using UDP/IP communication technology. Divide the sound in the water supply pipeline into leaky and non-leaky sound and make it into a data set, extract the Mel spectrum feature map information of leaky audio and non-leaky audio samples, and select lightweight convolutional neural network ShuffleNet V2 for training and recognition according to the real-time performance; Secondly, the attention mechanism of CBAM is introduced to improve the Unit1 of ShuffleNet V2 and We proposed Unit1_y. At last, the improved network is compared with the lightweight networks such as MobileNet V3 and Resnet18. The test results show that the improved network has the best effect on water supply pipeline leakage sound recognition, and the recognition rate of the test set reaches 92.14%, which verifies the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

杨智伦,朱铮涛,陈树雄,李 博,招祖炜.改进CNN的供水管道泄漏声音识别[J].国外电子测量技术,2023,42(01):153-158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码