基于自适应降噪的柱塞泵故障音频特征提取方法
DOI:
CSTR:
作者:
作者单位:

1. 中国石油化工股份有限公司胜利油田分公司技术检测中心 东营 257000;2. 中国石油大学(华东) 海洋与空间信息学院 青岛 266580

作者简介:

通讯作者:

中图分类号:

TH137.51

基金项目:


Audio Feature Extraction Method for Plunger Pump Fault Based on Adaptive Noise Reduction
Author:
Affiliation:

1. Sinopec Shengli Oilfield Branch Technical Testing Center, Dongying 257000, China;2. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了增强柱塞泵在强背景噪声下的音频信号特征,进而提高故障诊断准确率,提出了一种基于自适应降噪的柱塞泵故障音频特征提取方法。通过引入了Gammatone倒谱变换进行特征的初步提取,将柱塞泵音频信号转化到时频域,并提出一种自适应降噪方法,去除了时频信号中与故障无关的背景噪音。最后通过Resnet-18神经网络开展了故障分类对比实验,结果表明,经过自适应降噪,柱塞泵故障诊断准确率提高至96.97%,验证了所提出的特征提取方法能够有效降低柱塞泵背景噪音的影响,从而提高了故障诊断的准确率。

    Abstract:

    To enhance the audio signal features of plunger pump under strong background noise and improve the accuracy of fault diagnosis, a method for extracting the fault audio features of the plunger pump based on adaptive noise reduction is proposed. By introducing the Gammatone cepstral transform to extract the features, the audio signal of the plunger pump is transformed into the time-frequency domain. Meanwhile, an adaptive noise reduction method is proposed to remove the background noise irrelevant to the fault in the time-frequency signal. Finally, a fault classification comparison experiment is carried out through the Resnet-18 neural network. The results show that the fault diagnosis accuracy of the plunger pump is improved to 96.97% after adaptive noise reduction, which verifies that the proposed feature extraction method can effectively reduce the influence of the background noise of the plunger pump, and improve the fault diagnosis accuracy.

    参考文献
    相似文献
    引证文献
引用本文

李 炜,刘 禹,李立刚,周 亮,宋长山.基于自适应降噪的柱塞泵故障音频特征提取方法[J].国外电子测量技术,2023,42(01):1-6

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码