融合图像局部和退化表征信息的盲超分辨重建
DOI:
CSTR:
作者:
作者单位:

河北工业职业技术大学智能制造学院 石家庄 050091

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Blind super-resolution reconstruction based on fusion of local information and degradation representation of image
Author:
Affiliation:

College of Intelligent Manufacturing, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对假设的退化模型与实际模型不一致时图像超分辨性能显著降低的问题,提出了一种融合图像空间局部和退化表征信息的深度卷积神经网络模型。首先对低分辨图像提取初始特征和退化表达量;然后构建级联的空间局部信息和退化信息模块以及特征融合块,这些模块进一步级联组成特征变换子网络;最后,利用反卷积层得到高分辨率图像。在基准测试数据集上的实验表明,当高斯核宽度不为0时,算法在采样因子为×2和×4的盲超分辨重建中均取得了较当前主流算法更高的峰值信噪比值(PSNR),其中×2盲超分辨时最高的PSNR值为37.56,×4盲超分辨时最高的PSNR值为31.87,并且与主流算法相比也有较高的重建效率和较好重建视觉效果。

    Abstract:

    Aiming at the problem that the super-resolution performance of image is significantly reduced when the assumed degradation model is inconsistent with the actual model, a deep convolution neural network model integrating the local and degradation representation information of image space is proposed. First, the initial features and degraded expressions are extracted from the low-resolution image, and then the cascaded spatial local information and degraded information modules and feature fusion blocks are constructed. These modules are further cascaded to form the feature transformation sub network. Finally, the high-resolution image is obtained by using the deconvolution layer. The experiments on the benchmark test dataset show that the algorithm achieves higher peak signal-to-noise ratio (PSNR) than the current mainstream blind super-resolution algorithms for both and sampling factors when the Gaussian kernel width is not 0, with the highest PSNR value is 37.56 for blind super-resolution and 31.87 for blind super-resolution, and also has higher reconstruction efficiency and better reconstruction visual effect compared with the mainstream algorithms.

    参考文献
    相似文献
    引证文献
引用本文

刘建军,郝敏钗,李建朝,胡雪花.融合图像局部和退化表征信息的盲超分辨重建[J].国外电子测量技术,2023,42(01):112-118

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码