基于双通道特征融合编解码网络的极化SAR图像分类
DOI:
CSTR:
作者:
作者单位:

1.中国科学院空天信息创新研究院 北京 100190;2.中国科学院大学电子电气与通信工程学院 北京 100049

作者简介:

通讯作者:

中图分类号:

TP753

基金项目:


PolSAR image classification based on dual-channel Feature Fusion encoder-decoder network
Author:
Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; 2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像分类是极化合成孔径雷达(PolSAR)图像解译的关键。传统卷积神经网络(CNN)逐像素的分类,造成卷积的重复计算。PolSAR图像存在丰富的信息,包括极化相干信息与极化分解信息,因此如何融合信息实现高效分类至关重要。本文基于极化散射特征分析,以U_net网络模型为基础,提出了双通道特征融合编解码网络,该网络使用注意力机制特征融合模块将极化相干信息和极化分解特征整合到语义分割框架中,辅助深度CNN分类器训练,实现高精度像素级的标记,加入空间金字塔结构有效的提取多尺度特征。该网络结构避免了逐像素切片重复计算,有效提升计算效率。利用AIRSAR获取的旧金山地区PolSAR数据和海南博鳌地区机载PolSAR数据进行试验研究,试验结果两个地区精度(OA)分别达到97.11%与99.97%,验证了本文提出的分类方法的有效性与较好的应用价值。

    Abstract:

    Image classification is an important application of Polarized synthetic aperture radar (PolSAR) image interpretation. Traditional convolutional neural network (CNN) classifies pixel-by-pixel, resulting in repeated computation of convolution. PolSAR images have rich information, including polarization coherence feature information and polarization decomposition feature information, so it is crucial to fuse the information to achieve efficient classification. This paper proposes dual-channel feature fusion encoder-decoder network based on polarization scattering feature information analysis and the U_net network model. The network uses an attention feature fusion mechanism to integrate polarization coherence feature information and polarization decomposition feature information into a semantic segmentation framework, assists deep CNN classifier training to achieve high precision pixel-level labeling, and incorporates a spatial pyramid structure to efficiently extract multi-scale features. The network structure avoids the repetitive computation of pixel-by-pixel classification and effectively improves the computational efficiency. We use the PolSAR data acquired by AIRSAR in San Francisco area and the airborne PolSAR data in Boao area of Hainan for experimental study, and the experimental results show that the overall accuracy (OA) of the two areas is 97.11% and 99.97% regions respectively, which verifies the effectiveness and better application value of the classification method.

    参考文献
    相似文献
    引证文献
引用本文

王蒙蒙,刘秀清,张衡,王春乐,贾小雪.基于双通道特征融合编解码网络的极化SAR图像分类[J].国外电子测量技术,2023,42(01):187-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码