基于时频谱图特征和PSO-CNN的外破振动信号识别
DOI:
CSTR:
作者:
作者单位:

三峡大学电气与新能源学院,湖北 宜昌 443000

作者简介:

通讯作者:

中图分类号:

TM757

基金项目:

国家自然科学基金资助项目(51477090)


Vibration signal identification of external force failure based on time-frequency spectrum and adaptive dynamic weight PSO-CNN algorithm
Author:
Affiliation:

College of Electricity and New Energy, China Three Gorges University, Hubei Yichang 443000

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为避免地下电缆遭受破坏,提高振动监测系统对外力破坏的预警能力,提出一种基于时频谱图和自适应动态权重PSO-CNN的外破振动信号识别方法。首先,将振动传感系统获取的3000组外破振动信号转化生成为时频谱图数据集,在图像预处理阶段,采用直方图均衡化和2D-PCA算法来增强灰度图像特征并实现图像数据的降维;然后,将图像数据集的70%作为CNN模型的训练集,并在网络训练过程中引入自适应动态惯性权重粒子群算法(PSO)对CNN模型的卷积层、池化层相关参数进行迭代寻优,从而获得优化PSO-CNN分类模型;最后,利用测试集图像数据对优化PSO-CNN模型的识别性能进行验证,并与其他分类模型进行了对比。结果表明:所提方法对六种常见外破振动信号的识别准确率达到98.33%,平均每张图像的识别时间仅为0.24s,与其他分类算法相比具有更高的分类精度和更快速的识别速度,为快速准确地识别外力破坏事件类型提供了一种可行方案。

    Abstract:

    In order to avoid the damage of underground cables and improve the early warning ability of the vibration monitoring system against external force damage, an identification method of external damage vibration signal based on time-frequency spectrum and adaptive dynamic inertia weight PSO-CNN is proposed. Firstly, 3000 groups of external vibration signals obtained by the vibration sensing system are converted into time-frequency spectrum data sets. In the image preprocessing stage, histogram equalization and 2D-PCA algorithm are used to enhance the characteristics of gray image and reduce the dimensions of image data; Then, 70% of the image dataset is taken as the training set of the CNN model, and the adaptive dynamic inertia weight particle swarm optimization (PSO) algorithm is introduced in the network training process to iteratively optimize the relevant parameters of the convolution layer and pooling layer of the CNN model, so as to obtain the optimized PSO-CNN classification model; Finally, the recognition performance of the optimized PSO-CNN model is verified by using test set image data, and which is compared with other classification models. The results show that the recognition accuracy of the proposed method for six common external damage vibration signals reaches 98.33%, and the average recognition time of each image is only 0.24s. Compared with other classification algorithms, the proposed method has higher classification accuracy and faster recognition speed, which provides a feasible scheme for quickly and accurately identifying the types of external damage events.

    参考文献
    相似文献
    引证文献
引用本文

崔岩,方春华,文中,方萌,游海鑫,郭俊康.基于时频谱图特征和PSO-CNN的外破振动信号识别[J].国外电子测量技术,2023,42(01):144-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码