一种面结构光三维测量系统的不确定度分析评定
DOI:
CSTR:
作者:
作者单位:

北京航空航天大学仪器科学与光电工程学院 北京 100191

作者简介:

通讯作者:

中图分类号:

TP391.41;TH74

基金项目:


Uncertainty analysis and evaluation of a surface structured light 3D measurement system
Author:
Affiliation:

School of Instrument and Optoelectronic Engineering, Beihang University, Beijing, 100191, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面结构光三维测量方法是一种典型的非接触式测量方法,在扫描测量领域具有广泛的应用,为了定量评估其测量结果的质量、可靠性,需要对不确定度进行评定。结合传统误差分析方法对面结构光测量系统的原理进行探究,采用基于测量系统分析(MSA)方法对不确定度来源进行分析并建立相应的分析模型;针对各不确定度分量设计对应的量化评定方案;分别使用测量不确定度表示指南(GUM)法与自适应蒙特卡洛方法(AMCM)对测量不确定度做出评定,并对评定结果进行分析比较。通过工件尺寸测量不确定度评定实例的结果表明,AMCM的评定结果较GUM法的结果更加可靠。同时,通过验证程序表明,对于本测量任务,在不确定度保留一位有效数字时,GUM法依然适用;但是在不确定度保留两位有效数字时,GUM法未通过验证,说明使用AMCM进行替代是有必要的。

    Abstract:

    Surface structured light 3D measurement is a typical non-contact method, with a wide range of applications in scanning measurement field. In order to quantitatively evaluate the quality and reliability of the measurement results, it is necessary to evaluate the uncertainty. Combined with the traditional error analysis method, the principle of the measurement system is explored. The uncertainty sources are analyzed by using the MSA method and the corresponding model is established. The quantitative evaluation scheme is designed for each uncertainty component, and GUM and AMCM are respectively used to evaluate the measurement uncertainty, and the results are analyzed and compared. The experiment of dimension measurement shows that the AMCM is more reliable than the GUM method. At the same time, the verification procedure shows that GUM method is still applicable when the uncertainty retains only one significant digit. However, when the uncertainty retains two significant digits, GUM method fails to be verified, indicating that it is necessary to use AMCM instead.

    参考文献
    相似文献
    引证文献
引用本文

李双,王中宇.一种面结构光三维测量系统的不确定度分析评定[J].国外电子测量技术,2023,42(01):58-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码