基于深度学习的红外过采样扫描图像小目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

1.郑州工业应用技术学院 信息工程学院 新郑 451150; 2.武汉轻工大学 数学与计算机学院 武汉430023

作者简介:

通讯作者:

中图分类号:

TP391.41;TP18

基金项目:


Small Object Tracking Algorithm for Infrared Oversampled Scanning Images Based on Deep Learning
Author:
Affiliation:

1.Department of Information Engineering, Institute of Zhengzhou Industrial Application Technology, Xinzheng 451150, China; Department of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红外小目标跟踪过程中由于背景、外界杂波等干扰,导致跟踪精确度和实时性欠佳,为此,提出基于深度学习的红外过采样扫描图像小目标跟踪算法。首先构建了红外过采样扫描图像模型,通过背景估计、形态学开运算,对图像中背景以及外界杂波进行多级滤除;然后增加设计特征融合模块和区域选取模块来改进孪生网络,生成融合特征图输入目标区域,通过分类和回归计算提高图像的特征表征能力和跟踪精度;最后建立损失函数训练孪生网络,输出红外过采样扫描图像小目标跟踪结果。实验结果表明,利用所提算法进行图像滤除后,信噪比能够高达35 dB,所提算法的区域重叠率较高、跟踪精度高,且算法的实时性强,帧率达到200 fps以上,整体跟踪效果好。

    Abstract:

    In the process of infrared small object tracking, the tracking accuracy and real-time performance are poor. Therefore, the algorithm of infrared over-sampling scanning image small object tracking based on deep learning is proposed. Firstly, the infrared oversampling scanning image model is constructed, used to filter the background and external clutter, then add the design feature fusion module and area selection module to improve the twin network, generate the fusion feature map input target area, and improve the feature representation ability and tracking accuracy through classification and regression calculation. Finally, the loss function is established to train the twin network and output the small target tracking results of infrared oversampled scanning images. The experimental results show that the proposed algorithm can be up to 35dB, the proposed algorithm has high regional overlap rate, high tracking accuracy, strong real-time algorithm, the frame rate reaches more than 200 fps, and the overall tracking effect is good.

    参考文献
    相似文献
    引证文献
引用本文

姚迎乐,赵娟.基于深度学习的红外过采样扫描图像小目标跟踪算法[J].国外电子测量技术,2023,42(01):35-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码